Unimodality of the Andrews-Garvan-Dyson cranks of partitions

نویسندگان

چکیده

The main objective of this paper is to investigate the distribution Andrews-Garvan-Dyson cranks partitions. Let M(m,n) denote number partitions n with crank m, we show that sequence {M(m,n)}|m|≤n−1 unimodal for n≥44. It turns out unimodality related monotonicity properties two partition functions pr(n) and ppr(n). parts taken from {2,3,…,r} let ppr(n) pairs (α,β) partitions, where α a counted by pr(i) β pr+1(n−i) 0≤i≤n. We pr(n)≥pr(n−1) r≥5 n≥14 ppr(n)≥ppr(n−1) r≥3 n≥8. With aid on ppr(n), M(m,n)≥M(m,n−1) 0≤m≤n−2 M(m−1,n)≥M(m,n) n≥44 1≤m≤n−1. By means symmetry M(m,n)=M(−m,n), find 1≤m≤n−1 implies also give proof an upper bound ospt(n) conjectured Chan Mao in light 0≤m≤n−1.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partition congruences and the Andrews-Garvan-Dyson crank.

In 1944, Freeman Dyson conjectured the existence of a "crank" function for partitions that would provide a combinatorial proof of Ramanujan's congruence modulo 11. Forty years later, Andrews and Garvan successfully found such a function and proved the celebrated result that the crank simultaneously "explains" the three Ramanujan congruences modulo 5, 7, and 11. This note announces the proof of ...

متن کامل

Resolution of a Conjecture of Andrews and Lewis Involving Cranks of Partitions

In [1] Andrews and Lewis conjecture that the sign of the number of partitions of n with crank congruent to 0 mod 3, minus the number of partitions of n with crank congruent to 1 mod 3 is determined by the congruence class of n mod 3 apart from a finite number of specific exceptions. We prove this by using the “Circle Method” to approximate the value of this difference to great enough accuracy t...

متن کامل

A Proof of Andrews ' < ? - Dyson Conjecture for «

Andrews' g-Dyson conjecture is that the constant term in a polynomial associated with the root system An _, is equal to the ^-multinomial coefficient. Good used an identity to establish the case q = 1, which was originally raised by Dyson. Andrews established his conjecture for n < 3 and Macdonald proved it when a¡ = a2 = ■ ■ ■ = a„ = 1,2 or oo for all n > 2. We use a ¿/-analog of Good's identi...

متن کامل

Conjecture of Andrews on Partitions

Definition 1.2. For an even integer λ, let Aλ,k,a(n) denote the number of partitions of n into parts such that no part which is not equivalent to 0(mod λ+ 1) may be repeated and no part is equivalent to 0,±(a−λ/2)(λ+1)mod[(2k−λ+1)(λ+1)]. For an odd integer λ, let Aλ,k,a(n) denote the number of partitions of n into parts such that no part which is not equivalent to 0(mod((λ+1)/2)) may be repeate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2021

ISSN: ['1857-8365', '1857-8438']

DOI: https://doi.org/10.1016/j.aim.2021.108053